BinomoAPI

Best Practices

Support

donate in paypal: Paypal.me
help us in patreon: Patreon
👉 Join us on Discord
Get our services here
Let us create your bot here
Contact us in Telegram

Essential guidelines and best practices for using BinomoAPI in production environments.

🏗️ Project Structure

your_project/
├── config/
│   ├── __init__.py
│   ├── settings.py        # Configuration
│   └── logging.py        # Logging setup
├── strategies/
│   ├── __init__.py
│   ├── base.py           # Base strategy class
│   └── implementations/  # Strategy implementations
├── utils/
│   ├── __init__.py
│   ├── analysis.py      # Analysis utilities
│   └── validation.py    # Input validation
├── services/
│   ├── __init__.py
│   ├── trading.py       # Trading service
│   └── monitoring.py    # Monitoring service
├── tests/
│   ├── __init__.py
│   ├── test_trading.py
│   └── test_strategies.py
├── main.py              # Entry point
└── requirements.txt     # Dependencies

🚀 Code Organization

Clean Code Structure

from BinomoAPI import BinomoAPI
from typing import Optional, Dict, Any

class TradingService:
    """
    Professional trading service implementation.
    """
    
    def __init__(
        self,
        api: BinomoAPI,
        config: Dict[str, Any]
    ):
        self.api = api
        self.config = config
    
    async def execute_trade(
        self,
        asset: str,
        direction: str,
        amount: float,
        duration: int
    ) -> Dict[str, Any]:
        """
        Execute a trade with proper validation.
        
        Args:
            asset: Asset to trade
            direction: Trade direction (CALL/PUT)
            amount: Trade amount
            duration: Option duration in seconds
            
        Returns:
            Dict containing trade result
            
        Raises:
            TradeError: If trade execution fails
        """
        # Implementation

🛡️ Security Best Practices

Credential Management

import os
from dotenv import load_dotenv

def get_credentials():
    """
    Secure credential management.
    """
    load_dotenv()
    
    email = os.getenv("BINOMO_EMAIL")
    password = os.getenv("BINOMO_PASSWORD")
    
    if not email or not password:
        raise ValueError(
            "Missing required credentials"
        )
    
    return email, password

Session Management

import asyncio
from datetime import datetime, timedelta

class SessionManager:
    def __init__(self, api: BinomoAPI):
        self.api = api
        self.last_activity = datetime.now()
        self.session_timeout = timedelta(hours=1)
    
    async def check_session(self):
        """
        Ensure session is valid.
        """
        if datetime.now() - self.last_activity > self.session_timeout:
            await self.refresh_session()
        
        self.last_activity = datetime.now()
    
    async def refresh_session(self):
        """
        Refresh authentication.
        """
        # Implementation

📊 Error Handling

Professional Error Management

import logging
from contextlib import contextmanager
from typing import Generator

@contextmanager
def error_boundary(
    operation: str
) -> Generator[None, None, None]:
    """
    Professional error boundary implementation.
    """
    try:
        yield
    except Exception as e:
        logging.error(
            f"Error in {operation}: {str(e)}"
        )
        raise

🔍 Logging

Structured Logging

import logging
import json
from datetime import datetime

class StructuredLogger:
    def __init__(self, name: str):
        self.logger = logging.getLogger(name)
        self.setup_logging()
    
    def setup_logging(self):
        """
        Setup structured logging.
        """
        handler = logging.FileHandler('trading.log')
        handler.setFormatter(
            logging.Formatter(
                '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
            )
        )
        self.logger.addHandler(handler)
        self.logger.setLevel(logging.INFO)
    
    def log_trade(self, trade_data: dict):
        """
        Log trade information.
        """
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "type": "trade",
            "data": trade_data
        }
        self.logger.info(json.dumps(log_entry))

🚦 Rate Limiting

Professional Rate Limiting

import asyncio
from datetime import datetime, timedelta

class RateLimiter:
    def __init__(
        self,
        max_requests: int,
        time_window: int
    ):
        self.max_requests = max_requests
        self.time_window = time_window
        self.requests = []
    
    async def acquire(self):
        """
        Acquire rate limit token.
        """
        now = datetime.now()
        
        # Remove old requests
        self.requests = [
            req_time for req_time in self.requests
            if now - req_time < timedelta(seconds=self.time_window)
        ]
        
        if len(self.requests) >= self.max_requests:
            # Wait for next available slot
            sleep_time = (
                self.requests[0] +
                timedelta(seconds=self.time_window) -
                now
            ).total_seconds()
            await asyncio.sleep(sleep_time)
        
        self.requests.append(now)

🔄 Resource Management

Connection Pool

from typing import List
import aiohttp

class ConnectionPool:
    def __init__(self, size: int = 10):
        self.size = size
        self.connections: List[aiohttp.ClientSession] = []
    
    async def get_connection(self):
        """
        Get available connection.
        """
        if not self.connections:
            return await self.create_connection()
        return self.connections.pop()
    
    async def release_connection(
        self,
        connection: aiohttp.ClientSession
    ):
        """
        Release connection back to pool.
        """
        if len(self.connections) < self.size:
            self.connections.append(connection)
        else:
            await connection.close()
    
    async def create_connection(self):
        """
        Create new connection.
        """
        return aiohttp.ClientSession()

📈 Performance Optimization

Caching

from functools import lru_cache
from typing import Any, Dict

class Cache:
    def __init__(self, maxsize: int = 100):
        self.maxsize = maxsize
        self._cache: Dict[str, Any] = {}
    
    @lru_cache(maxsize=100)
    def get_asset_info(self, asset: str) -> Dict:
        """
        Cached asset information.
        """
        # Implementation

Batch Processing

from typing import List, Dict

class BatchProcessor:
    def __init__(self, api: BinomoAPI):
        self.api = api
        self.batch_size = 10
        self.queue: List[Dict] = []
    
    async def add_to_batch(self, operation: Dict):
        """
        Add operation to batch.
        """
        self.queue.append(operation)
        
        if len(self.queue) >= self.batch_size:
            await self.process_batch()
    
    async def process_batch(self):
        """
        Process queued operations.
        """
        if not self.queue:
            return
        
        batch = self.queue[:self.batch_size]
        self.queue = self.queue[self.batch_size:]
        
        # Process batch
        # Implementation

🔍 Monitoring

Health Checks

import asyncio
from datetime import datetime

class HealthMonitor:
    def __init__(self, api: BinomoAPI):
        self.api = api
        self.last_check = datetime.now()
    
    async def check_health(self):
        """
        Comprehensive health check.
        """
        try:
            # Check API connection
            await self.api.get_balance()
            
            # Check WebSocket
            await self.api.ws_client.ping()
            
            # Update status
            self.last_check = datetime.now()
            return True
            
        except Exception as e:
            logging.error(f"Health check failed: {e}")
            return False

Performance Monitoring

import time
from typing import Callable, Any

class PerformanceMonitor:
    def __init__(self):
        self.metrics = {}
    
    async def measure(
        self,
        name: str,
        func: Callable,
        *args,
        **kwargs
    ) -> Any:
        """
        Measure function performance.
        """
        start = time.time()
        try:
            result = await func(*args, **kwargs)
            duration = time.time() - start
            
            self.update_metrics(name, duration)
            return result
            
        except Exception as e:
            duration = time.time() - start
            self.update_metrics(name, duration, error=True)
            raise
    
    def update_metrics(
        self,
        name: str,
        duration: float,
        error: bool = False
    ):
        """
        Update performance metrics.
        """
        if name not in self.metrics:
            self.metrics[name] = {
                "count": 0,
                "total_time": 0,
                "errors": 0
            }
        
        self.metrics[name]["count"] += 1
        self.metrics[name]["total_time"] += duration
        if error:
            self.metrics[name]["errors"] += 1

Remember to always follow these best practices for reliable and maintainable code!