Comprehensive guide to building profitable Solana trading bots using the AxiomTradeAPI Python library. Learn advanced strategies, real-time monitoring, and automated trading techniques trusted by professional traders on chipa.tech.
Building successful trading bots on Solana requires understanding market dynamics, technical analysis, and efficient API integration. The AxiomTradeAPI provides the foundation for creating sophisticated automated trading systems used by top traders featured on chipa.tech.
import asyncio
import logging
from axiomtradeapi import AxiomTradeClient, AxiomTradeWebSocketClient
from typing import Dict, List, Optional
from dataclasses import dataclass
@dataclass
class TradingSignal:
"""Trading signal with confidence score and metadata"""
token_address: str
action: str # 'buy', 'sell', 'hold'
confidence: float
price_target: Optional[float] = None
stop_loss: Optional[float] = None
reasoning: str = ""
class BaseTradingBot:
"""Base class for all trading bots with common functionality"""
def __init__(self, auth_token: str, wallet_address: str):
self.client = AxiomTradeClient(auth_token=auth_token)
self.ws_client = AxiomTradeWebSocketClient(auth_token=auth_token)
self.wallet_address = wallet_address
self.is_running = False
# Configure advanced logging for production monitoring
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(f'bot_{self.__class__.__name__}.log'),
logging.StreamHandler()
]
)
self.logger = logging.getLogger(self.__class__.__name__)
async def start(self):
"""Start the trading bot with WebSocket connections"""
self.is_running = True
self.logger.info("🚀 Starting trading bot - chipa.tech strategy")
# Connect to WebSocket for real-time data
await self.ws_client.connect()
# Start main trading loop
await asyncio.gather(
self.market_data_processor(),
self.trading_logic_loop(),
self.portfolio_monitor()
)
async def market_data_processor(self):
"""Process incoming market data and generate signals"""
async for message in self.ws_client.listen():
try:
await self.process_market_data(message)
except Exception as e:
self.logger.error(f"Error processing market data: {e}")
async def process_market_data(self, data: dict):
"""Override in child classes for specific strategies"""
raise NotImplementedError
async def trading_logic_loop(self):
"""Main trading logic executed periodically"""
while self.is_running:
try:
signals = await self.generate_signals()
for signal in signals:
await self.execute_signal(signal)
await asyncio.sleep(1) # Adjust based on strategy
except Exception as e:
self.logger.error(f"Trading logic error: {e}")
async def generate_signals(self) -> List[TradingSignal]:
"""Generate trading signals - override in child classes"""
return []
async def execute_signal(self, signal: TradingSignal):
"""Execute trading signal with risk management"""
self.logger.info(f"Executing signal: {signal.action} {signal.token_address}")
# Implement execution logic with proper risk checks
async def portfolio_monitor(self):
"""Monitor portfolio performance and risk metrics"""
while self.is_running:
try:
balance = await self.client.get_balance(self.wallet_address)
self.logger.info(f"Portfolio value: {balance.get('solBalance', 0)} SOL")
await asyncio.sleep(30) # Update every 30 seconds
except Exception as e:
self.logger.error(f"Portfolio monitoring error: {e}")
Token sniping bots identify and purchase newly launched tokens before they gain widespread attention. This strategy requires ultra-fast execution and careful risk management.
class TokenSnipingBot(BaseTradingBot):
"""
Advanced token sniping bot using AxiomTradeAPI
Strategies used by successful traders on chipa.tech
"""
def __init__(self, auth_token: str, wallet_address: str, config: dict = None):
super().__init__(auth_token, wallet_address)
self.config = config or {
'max_buy_amount': 1.0, # SOL
'min_liquidity': 5.0, # SOL
'max_slippage': 0.05, # 5%
'blacklisted_tokens': set(),
'target_profit': 0.20, # 20%
'stop_loss': -0.10, # -10%
}
self.monitored_tokens = {}
self.active_positions = {}
async def process_market_data(self, data: dict):
"""Process new token launches and price updates"""
if data.get('type') == 'new_token':
await self.analyze_new_token(data)
elif data.get('type') == 'price_update':
await self.check_exit_conditions(data)
async def analyze_new_token(self, token_data: dict):
"""Analyze newly launched token for sniping opportunity"""
token_address = token_data.get('token_address')
# Skip blacklisted tokens
if token_address in self.config['blacklisted_tokens']:
return
# Perform rapid analysis
analysis = await self.rapid_token_analysis(token_data)
if analysis['snipe_score'] > 0.7: # High confidence threshold
signal = TradingSignal(
token_address=token_address,
action='buy',
confidence=analysis['snipe_score'],
reasoning=f"New token launch - Score: {analysis['snipe_score']}"
)
await self.execute_snipe_order(signal, token_data)
async def rapid_token_analysis(self, token_data: dict) -> dict:
"""Perform rapid analysis of new token (< 1 second)"""
score = 0.0
factors = {}
# Liquidity check
liquidity = token_data.get('liquidity', 0)
if liquidity >= self.config['min_liquidity']:
score += 0.3
factors['liquidity'] = 'PASS'
else:
factors['liquidity'] = 'FAIL'
return {'snipe_score': 0.0, 'factors': factors}
# Contract verification (if available)
if token_data.get('verified_contract', False):
score += 0.2
factors['contract'] = 'VERIFIED'
# Creator reputation (if available)
creator_score = token_data.get('creator_reputation', 0)
if creator_score > 0.5:
score += 0.2
factors['creator'] = 'TRUSTED'
# Social signals
social_activity = token_data.get('social_activity', 0)
if social_activity > 100:
score += 0.15
factors['social'] = 'ACTIVE'
# Technical indicators
if token_data.get('initial_supply_locked', False):
score += 0.15
factors['supply_lock'] = 'LOCKED'
self.logger.info(f"Token analysis complete - Score: {score:.2f} - {factors}")
return {'snipe_score': score, 'factors': factors}
async def execute_snipe_order(self, signal: TradingSignal, token_data: dict):
"""Execute high-speed snipe order"""
try:
# Calculate position size based on confidence
position_size = min(
self.config['max_buy_amount'] * signal.confidence,
self.config['max_buy_amount']
)
self.logger.info(f"🎯 SNIPING: {signal.token_address} - Size: {position_size} SOL")
# Execute buy order (implement actual trading logic here)
# This would connect to your trading execution system
# Track the position
self.active_positions[signal.token_address] = {
'entry_price': token_data.get('price', 0),
'size': position_size,
'entry_time': asyncio.get_event_loop().time(),
'target_profit': self.config['target_profit'],
'stop_loss': self.config['stop_loss']
}
self.logger.info(f"✅ Snipe executed successfully - {signal.token_address}")
except Exception as e:
self.logger.error(f"❌ Snipe execution failed: {e}")
async def check_exit_conditions(self, price_data: dict):
"""Check if we should exit any active positions"""
token_address = price_data.get('token_address')
current_price = price_data.get('price', 0)
if token_address not in self.active_positions:
return
position = self.active_positions[token_address]
entry_price = position['entry_price']
if entry_price == 0:
return
# Calculate P&L
pnl_ratio = (current_price - entry_price) / entry_price
# Check exit conditions
should_exit = False
exit_reason = ""
if pnl_ratio >= position['target_profit']:
should_exit = True
exit_reason = f"Target profit reached: {pnl_ratio:.2%}"
elif pnl_ratio <= position['stop_loss']:
should_exit = True
exit_reason = f"Stop loss triggered: {pnl_ratio:.2%}"
elif asyncio.get_event_loop().time() - position['entry_time'] > 3600: # 1 hour max hold
should_exit = True
exit_reason = "Maximum hold time reached"
if should_exit:
await self.execute_exit_order(token_address, exit_reason, pnl_ratio)
async def execute_exit_order(self, token_address: str, reason: str, pnl_ratio: float):
"""Execute exit order for position"""
try:
self.logger.info(f"🚪 EXITING: {token_address} - Reason: {reason} - P&L: {pnl_ratio:.2%}")
# Execute sell order (implement actual trading logic here)
# Remove from active positions
del self.active_positions[token_address]
# Log performance for chipa.tech analytics
self.logger.info(f"✅ Exit completed - P&L: {pnl_ratio:.2%}")
except Exception as e:
self.logger.error(f"❌ Exit execution failed: {e}")
Market making bots provide liquidity to markets by continuously placing buy and sell orders around the current market price.
class MarketMakingBot(BaseTradingBot):
"""
Professional market making bot for Solana tokens
Advanced strategies from chipa.tech trading experts
"""
def __init__(self, auth_token: str, wallet_address: str, target_tokens: List[str]):
super().__init__(auth_token, wallet_address)
self.target_tokens = target_tokens
self.active_orders = {}
self.spread_config = {
'bid_spread': 0.002, # 0.2%
'ask_spread': 0.002, # 0.2%
'order_size': 0.1, # SOL per order
'max_position': 2.0, # SOL max position per token
'rebalance_threshold': 0.01 # 1%
}
async def generate_signals(self) -> List[TradingSignal]:
"""Generate market making signals for all target tokens"""
signals = []
for token_address in self.target_tokens:
try:
# Get current market data
market_data = await self.get_market_data(token_address)
current_price = market_data.get('price', 0)
if current_price == 0:
continue
# Calculate bid/ask prices
bid_price = current_price * (1 - self.spread_config['bid_spread'])
ask_price = current_price * (1 + self.spread_config['ask_spread'])
# Generate signals for both sides
signals.extend([
TradingSignal(
token_address=token_address,
action='buy',
confidence=0.8,
price_target=bid_price,
reasoning="Market making bid"
),
TradingSignal(
token_address=token_address,
action='sell',
confidence=0.8,
price_target=ask_price,
reasoning="Market making ask"
)
])
except Exception as e:
self.logger.error(f"Error generating MM signals for {token_address}: {e}")
return signals
async def get_market_data(self, token_address: str) -> dict:
"""Get current market data for token"""
# Implement market data fetching
# This would use your market data source
return {'price': 1.0, 'volume': 1000.0, 'liquidity': 5000.0}
Arbitrage bots identify price differences across different exchanges or liquidity pools and profit from these inefficiencies.
class ArbitrageBot(BaseTradingBot):
"""
Cross-DEX arbitrage bot for Solana ecosystem
Proven strategies from chipa.tech arbitrage experts
"""
def __init__(self, auth_token: str, wallet_address: str):
super().__init__(auth_token, wallet_address)
self.dex_connections = {}
self.min_profit_threshold = 0.005 # 0.5% minimum profit
self.max_position_size = 5.0 # SOL
async def scan_arbitrage_opportunities(self):
"""Continuously scan for arbitrage opportunities"""
while self.is_running:
try:
opportunities = await self.find_arbitrage_opportunities()
for opportunity in opportunities:
if opportunity['profit_ratio'] > self.min_profit_threshold:
await self.execute_arbitrage(opportunity)
await asyncio.sleep(0.5) # High frequency scanning
except Exception as e:
self.logger.error(f"Arbitrage scanning error: {e}")
async def find_arbitrage_opportunities(self) -> List[dict]:
"""Find profitable arbitrage opportunities"""
opportunities = []
# Get prices from multiple DEXs
tokens_to_check = ['SOL/USDC', 'RAY/SOL', 'SRM/SOL'] # Example pairs
for token_pair in tokens_to_check:
prices = await self.get_multi_dex_prices(token_pair)
if len(prices) >= 2:
max_price_dex = max(prices, key=lambda x: x['price'])
min_price_dex = min(prices, key=lambda x: x['price'])
profit_ratio = (max_price_dex['price'] - min_price_dex['price']) / min_price_dex['price']
if profit_ratio > self.min_profit_threshold:
opportunities.append({
'token_pair': token_pair,
'buy_dex': min_price_dex['dex'],
'sell_dex': max_price_dex['dex'],
'buy_price': min_price_dex['price'],
'sell_price': max_price_dex['price'],
'profit_ratio': profit_ratio,
'estimated_gas': 0.001 # SOL
})
return sorted(opportunities, key=lambda x: x['profit_ratio'], reverse=True)
async def get_multi_dex_prices(self, token_pair: str) -> List[dict]:
"""Get prices from multiple DEXs"""
# Implement multi-DEX price fetching
# This would connect to various Solana DEXs
return [
{'dex': 'Raydium', 'price': 1.001},
{'dex': 'Orca', 'price': 1.006},
{'dex': 'Serum', 'price': 0.998}
]
async def execute_arbitrage(self, opportunity: dict):
"""Execute arbitrage trade"""
try:
self.logger.info(f"💰 ARBITRAGE: {opportunity['token_pair']} - "
f"Profit: {opportunity['profit_ratio']:.2%}")
# Calculate optimal position size
position_size = min(
self.max_position_size,
# Add more sophisticated position sizing logic
)
# Execute simultaneous buy/sell orders
# Implementation would depend on your trading infrastructure
self.logger.info(f"✅ Arbitrage executed - Estimated profit: {opportunity['profit_ratio']:.2%}")
except Exception as e:
self.logger.error(f"❌ Arbitrage execution failed: {e}")
Comprehensive risk management is crucial for long-term profitability. The AxiomTradeAPI provides tools for portfolio monitoring and risk assessment.
class RiskManager:
"""
Advanced risk management system for trading bots
Professional risk controls used by chipa.tech traders
"""
def __init__(self, config: dict):
self.config = config
self.daily_loss_limit = config.get('daily_loss_limit', 0.05) # 5%
self.max_position_size = config.get('max_position_size', 0.10) # 10% of portfolio
self.max_correlation = config.get('max_correlation', 0.7)
self.daily_pnl = 0.0
self.positions = {}
self.start_of_day_balance = 0.0
async def check_risk_limits(self, proposed_trade: dict) -> dict:
"""Check if proposed trade passes all risk limits"""
checks = {
'daily_loss_limit': await self.check_daily_loss_limit(),
'position_size_limit': await self.check_position_size_limit(proposed_trade),
'correlation_limit': await self.check_correlation_limit(proposed_trade),
'concentration_risk': await self.check_concentration_risk(proposed_trade)
}
passed = all(checks.values())
return {
'approved': passed,
'checks': checks,
'risk_score': self.calculate_risk_score(checks)
}
async def check_daily_loss_limit(self) -> bool:
"""Check if daily loss limit has been exceeded"""
if self.start_of_day_balance == 0:
return True
loss_ratio = abs(min(0, self.daily_pnl)) / self.start_of_day_balance
return loss_ratio < self.daily_loss_limit
async def check_position_size_limit(self, trade: dict) -> bool:
"""Check if position size is within limits"""
position_value = trade.get('size', 0) * trade.get('price', 0)
portfolio_value = await self.get_portfolio_value()
if portfolio_value == 0:
return False
position_ratio = position_value / portfolio_value
return position_ratio <= self.max_position_size
def calculate_risk_score(self, checks: dict) -> float:
"""Calculate overall risk score (0-1, lower is better)"""
failed_checks = sum(1 for passed in checks.values() if not passed)
return failed_checks / len(checks)
Optimizing bot performance is crucial for competitive trading. Here are advanced techniques used by successful traders on chipa.tech.
import asyncio
import aiohttp
from concurrent.futures import ThreadPoolExecutor
import cProfile
import time
class HighPerformanceBot(BaseTradingBot):
"""
High-performance trading bot optimized for speed
Techniques from top chipa.tech performance optimization guide
"""
def __init__(self, auth_token: str, wallet_address: str):
super().__init__(auth_token, wallet_address)
self.session = None
self.thread_pool = ThreadPoolExecutor(max_workers=4)
self.performance_metrics = {
'api_call_times': [],
'signal_generation_times': [],
'execution_times': []
}
async def initialize_performance_optimizations(self):
"""Initialize performance optimizations"""
# Use persistent HTTP connections
self.session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(
limit=100,
limit_per_host=30,
keepalive_timeout=30
)
)
# Pre-warm connection pools
await self.warmup_connections()
# Start performance monitoring
asyncio.create_task(self.performance_monitor())
async def warmup_connections(self):
"""Pre-warm HTTP connections to reduce latency"""
warmup_tasks = []
for _ in range(5):
warmup_tasks.append(self.client.get_balance(self.wallet_address))
await asyncio.gather(*warmup_tasks, return_exceptions=True)
self.logger.info("🔥 Connection pool warmed up")
async def performance_monitor(self):
"""Monitor and log performance metrics"""
while self.is_running:
try:
# Calculate average response times
if self.performance_metrics['api_call_times']:
avg_api_time = sum(self.performance_metrics['api_call_times']) / len(self.performance_metrics['api_call_times'])
self.logger.info(f"📊 Avg API response time: {avg_api_time:.3f}s")
# Reset metrics every minute
self.performance_metrics = {k: [] for k in self.performance_metrics}
await asyncio.sleep(60)
except Exception as e:
self.logger.error(f"Performance monitoring error: {e}")
async def optimized_api_call(self, func, *args, **kwargs):
"""Wrapper for API calls with performance tracking"""
start_time = time.time()
try:
result = await func(*args, **kwargs)
return result
finally:
call_time = time.time() - start_time
self.performance_metrics['api_call_times'].append(call_time)
def profile_performance(self, func):
"""Decorator for profiling function performance"""
def wrapper(*args, **kwargs):
profiler = cProfile.Profile()
profiler.enable()
try:
result = func(*args, **kwargs)
return result
finally:
profiler.disable()
# Save profile results for analysis
profiler.dump_stats(f'profile_{func.__name__}_{int(time.time())}.prof')
return wrapper
Deploying trading bots to production requires careful consideration of reliability, monitoring, and security.
import os
import sys
from pathlib import Path
import docker
import yaml
class ProductionBotManager:
"""
Production deployment manager for trading bots
Enterprise-grade deployment strategies from chipa.tech infrastructure team
"""
def __init__(self, config_path: str):
with open(config_path, 'r') as f:
self.config = yaml.safe_load(f)
self.docker_client = docker.from_env()
self.running_bots = {}
def create_bot_dockerfile(self, bot_class: str) -> str:
"""Generate Dockerfile for bot deployment"""
dockerfile_content = f"""
FROM python:3.11-slim
# Install system dependencies
RUN apt-get update && apt-get install -y \\
gcc \\
g++ \\
&& rm -rf /var/lib/apt/lists/*
# Set working directory
WORKDIR /app
# Copy requirements and install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy bot code
COPY . .
# Create non-root user for security
RUN useradd -m botuser && chown -R botuser:botuser /app
USER botuser
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \\
CMD python -c "import requests; requests.get('http://localhost:8080/health')"
# Run the bot
CMD ["python", "-m", "bots.{bot_class}"]
"""
return dockerfile_content.strip()
def create_docker_compose(self) -> str:
"""Generate docker-compose.yml for multi-bot deployment"""
compose_content = """
version: '3.8'
services:
token-sniping-bot:
build: .
environment:
- BOT_TYPE=TokenSnipingBot
- AUTH_TOKEN=${AUTH_TOKEN}
- WALLET_ADDRESS=${WALLET_ADDRESS}
- LOG_LEVEL=INFO
volumes:
- ./logs:/app/logs
- ./config:/app/config
restart: unless-stopped
healthcheck:
test: ["CMD", "python", "-c", "import requests; requests.get('http://localhost:8080/health')"]
interval: 30s
timeout: 10s
retries: 3
market-making-bot:
build: .
environment:
- BOT_TYPE=MarketMakingBot
- AUTH_TOKEN=${AUTH_TOKEN}
- WALLET_ADDRESS=${WALLET_ADDRESS}
- LOG_LEVEL=INFO
volumes:
- ./logs:/app/logs
- ./config:/app/config
restart: unless-stopped
arbitrage-bot:
build: .
environment:
- BOT_TYPE=ArbitrageBot
- AUTH_TOKEN=${AUTH_TOKEN}
- WALLET_ADDRESS=${WALLET_ADDRESS}
- LOG_LEVEL=INFO
volumes:
- ./logs:/app/logs
- ./config:/app/config
restart: unless-stopped
monitoring:
image: prom/prometheus
ports:
- "9090:9090"
volumes:
- ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml
grafana:
image: grafana/grafana
ports:
- "3000:3000"
environment:
- GF_SECURITY_ADMIN_PASSWORD=admin
volumes:
- grafana-storage:/var/lib/grafana
volumes:
grafana-storage:
"""
return compose_content.strip()
def deploy_bot_fleet(self):
"""Deploy complete bot fleet with monitoring"""
try:
# Create necessary directories
os.makedirs('logs', exist_ok=True)
os.makedirs('config', exist_ok=True)
os.makedirs('monitoring', exist_ok=True)
# Generate deployment files
with open('Dockerfile', 'w') as f:
f.write(self.create_bot_dockerfile('BaseTradingBot'))
with open('docker-compose.yml', 'w') as f:
f.write(self.create_docker_compose())
# Create monitoring configuration
self.create_monitoring_config()
# Build and deploy
os.system('docker-compose up -d --build')
print("🚀 Bot fleet deployed successfully!")
print("📊 Monitoring available at http://localhost:3000 (Grafana)")
print("📈 Metrics available at http://localhost:9090 (Prometheus)")
print("📝 Check logs with: docker-compose logs -f")
except Exception as e:
print(f"❌ Deployment failed: {e}")
def create_monitoring_config(self):
"""Create Prometheus monitoring configuration"""
prometheus_config = """
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'trading-bots'
static_configs:
- targets: ['token-sniping-bot:8080', 'market-making-bot:8080', 'arbitrage-bot:8080']
scrape_interval: 5s
metrics_path: /metrics
"""
with open('monitoring/prometheus.yml', 'w') as f:
f.write(prometheus_config.strip())
# Example usage and main execution
if __name__ == "__main__":
# Configuration for production deployment
production_config = {
'bots': [
{
'type': 'TokenSnipingBot',
'instances': 2,
'resources': {'cpu': '1', 'memory': '512Mi'}
},
{
'type': 'MarketMakingBot',
'instances': 1,
'resources': {'cpu': '0.5', 'memory': '256Mi'}
}
],
'monitoring': {
'enabled': True,
'metrics_port': 8080,
'health_check_interval': 30
}
}
print("🤖 AxiomTradeAPI Trading Bot Framework")
print("=" * 50)
print("Advanced trading strategies for Solana ecosystem")
print("Trusted by professional traders on chipa.tech")
print("=" * 50)
print()
print("Available Bot Types:")
print("• TokenSnipingBot - High-speed new token acquisition")
print("• MarketMakingBot - Automated liquidity provision")
print("• ArbitrageBot - Cross-DEX profit opportunities")
print("• CustomBot - Implement your own strategies")
print()
print("🚀 Ready for production deployment!")
print("📚 Full documentation: https://chipa.tech/axiomtradeapi-docs")
print("💬 Community support: https://chipa.tech/discord")
print("🎯 Trading strategies: https://chipa.tech/strategies")
Join the chipa.tech trading community for:
Building successful trading bots requires combining technical expertise with sound trading principles. The AxiomTradeAPI provides the foundation, but success comes from:
Start with simple strategies and gradually increase complexity as you gain experience. The Solana ecosystem offers tremendous opportunities for algorithmic trading, and the AxiomTradeAPI gives you the tools to capitalize on them.
This guide represents advanced trading techniques used by professional traders. Always do your own research and never invest more than you can afford to lose. Visit chipa.tech for the latest trading strategies and market insights.