Search Documentation

Building Advanced Trading Bots with AxiomTradeAPI

Comprehensive guide to building profitable Solana trading bots using the AxiomTradeAPI Python library. Learn advanced strategies, real-time monitoring, and automated trading techniques.

Building Advanced Trading Bots with AxiomTradeAPI

Comprehensive guide to building profitable Solana trading bots using the AxiomTradeAPI Python library. Learn advanced strategies, real-time monitoring, and automated trading techniques.

Table of Contents

Building Advanced Trading Bots with AxiomTradeAPI

Comprehensive guide to building profitable Solana trading bots using the AxiomTradeAPI Python library. Learn advanced strategies, real-time monitoring, and automated trading techniques trusted by professional traders on chipa.tech.

Table of Contents

Introduction to Automated Trading

Building successful trading bots on Solana requires understanding market dynamics, technical analysis, and efficient API integration. The AxiomTradeAPI provides the foundation for creating sophisticated automated trading systems used by top traders featured on chipa.tech.

Why Choose AxiomTradeAPI for Bot Development?

  • Ultra-Low Latency: Direct connection to Solana validators
  • Real-time WebSocket Data: Instant price updates and token launches
  • Advanced Portfolio Management: Comprehensive balance tracking across wallets
  • Professional Grade Logging: Debug and monitor bot performance
  • Proven Track Record: Trusted by successful traders on chipa.tech trading community

Bot Architecture and Design Patterns

Modular Bot Framework

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import asyncio
import logging
from axiomtradeapi import AxiomTradeClient, AxiomTradeWebSocketClient
from typing import Dict, List, Optional
from dataclasses import dataclass

@dataclass
class TradingSignal:
    """Trading signal with confidence score and metadata"""
    token_address: str
    action: str  # 'buy', 'sell', 'hold'
    confidence: float
    price_target: Optional[float] = None
    stop_loss: Optional[float] = None
    reasoning: str = ""

class BaseTradingBot:
    """Base class for all trading bots with common functionality"""
    
    def __init__(self, auth_token: str, wallet_address: str):
        self.client = AxiomTradeClient(auth_token=auth_token)
        self.ws_client = AxiomTradeWebSocketClient(auth_token=auth_token)
        self.wallet_address = wallet_address
        self.is_running = False
        
        # Configure advanced logging for production monitoring
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
            handlers=[
                logging.FileHandler(f'bot_{self.__class__.__name__}.log'),
                logging.StreamHandler()
            ]
        )
        self.logger = logging.getLogger(self.__class__.__name__)
        
    async def start(self):
        """Start the trading bot with WebSocket connections"""
        self.is_running = True
        self.logger.info("🚀 Starting trading bot - chipa.tech strategy")
        
        # Connect to WebSocket for real-time data
        await self.ws_client.connect()
        
        # Start main trading loop
        await asyncio.gather(
            self.market_data_processor(),
            self.trading_logic_loop(),
            self.portfolio_monitor()
        )
    
    async def market_data_processor(self):
        """Process incoming market data and generate signals"""
        async for message in self.ws_client.listen():
            try:
                await self.process_market_data(message)
            except Exception as e:
                self.logger.error(f"Error processing market data: {e}")
    
    async def process_market_data(self, data: dict):
        """Override in child classes for specific strategies"""
        raise NotImplementedError
    
    async def trading_logic_loop(self):
        """Main trading logic executed periodically"""
        while self.is_running:
            try:
                signals = await self.generate_signals()
                for signal in signals:
                    await self.execute_signal(signal)
                await asyncio.sleep(1)  # Adjust based on strategy
            except Exception as e:
                self.logger.error(f"Trading logic error: {e}")
    
    async def generate_signals(self) -> List[TradingSignal]:
        """Generate trading signals - override in child classes"""
        return []
    
    async def execute_signal(self, signal: TradingSignal):
        """Execute trading signal with risk management"""
        self.logger.info(f"Executing signal: {signal.action} {signal.token_address}")
        # Implement execution logic with proper risk checks
    
    async def portfolio_monitor(self):
        """Monitor portfolio performance and risk metrics"""
        while self.is_running:
            try:
                balance = await self.client.get_balance(self.wallet_address)
                self.logger.info(f"Portfolio value: {balance.get('solBalance', 0)} SOL")
                await asyncio.sleep(30)  # Update every 30 seconds
            except Exception as e:
                self.logger.error(f"Portfolio monitoring error: {e}")

Token Sniping Bots

Token sniping bots identify and purchase newly launched tokens before they gain widespread attention. This strategy requires ultra-fast execution and careful risk management.

Advanced Token Sniping Implementation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
class TokenSnipingBot(BaseTradingBot):
    """
    Advanced token sniping bot using AxiomTradeAPI
    Strategies used by successful traders on chipa.tech
    """
    
    def __init__(self, auth_token: str, wallet_address: str, config: dict = None):
        super().__init__(auth_token, wallet_address)
        self.config = config or {
            'max_buy_amount': 1.0,  # SOL
            'min_liquidity': 5.0,   # SOL
            'max_slippage': 0.05,   # 5%
            'blacklisted_tokens': set(),
            'target_profit': 0.20,  # 20%
            'stop_loss': -0.10,     # -10%
        }
        self.monitored_tokens = {}
        self.active_positions = {}
    
    async def process_market_data(self, data: dict):
        """Process new token launches and price updates"""
        if data.get('type') == 'new_token':
            await self.analyze_new_token(data)
        elif data.get('type') == 'price_update':
            await self.check_exit_conditions(data)
    
    async def analyze_new_token(self, token_data: dict):
        """Analyze newly launched token for sniping opportunity"""
        token_address = token_data.get('token_address')
        
        # Skip blacklisted tokens
        if token_address in self.config['blacklisted_tokens']:
            return
        
        # Perform rapid analysis
        analysis = await self.rapid_token_analysis(token_data)
        
        if analysis['snipe_score'] > 0.7:  # High confidence threshold
            signal = TradingSignal(
                token_address=token_address,
                action='buy',
                confidence=analysis['snipe_score'],
                reasoning=f"New token launch - Score: {analysis['snipe_score']}"
            )
            await self.execute_snipe_order(signal, token_data)
    
    async def rapid_token_analysis(self, token_data: dict) -> dict:
        """Perform rapid analysis of new token (< 1 second)"""
        score = 0.0
        factors = {}
        
        # Liquidity check
        liquidity = token_data.get('liquidity', 0)
        if liquidity >= self.config['min_liquidity']:
            score += 0.3
            factors['liquidity'] = 'PASS'
        else:
            factors['liquidity'] = 'FAIL'
            return {'snipe_score': 0.0, 'factors': factors}
        
        # Contract verification (if available)
        if token_data.get('verified_contract', False):
            score += 0.2
            factors['contract'] = 'VERIFIED'
        
        # Creator reputation (if available)
        creator_score = token_data.get('creator_reputation', 0)
        if creator_score > 0.5:
            score += 0.2
            factors['creator'] = 'TRUSTED'
        
        # Social signals
        social_activity = token_data.get('social_activity', 0)
        if social_activity > 100:
            score += 0.15
            factors['social'] = 'ACTIVE'
        
        # Technical indicators
        if token_data.get('initial_supply_locked', False):
            score += 0.15
            factors['supply_lock'] = 'LOCKED'
        
        self.logger.info(f"Token analysis complete - Score: {score:.2f} - {factors}")
        return {'snipe_score': score, 'factors': factors}
    
    async def execute_snipe_order(self, signal: TradingSignal, token_data: dict):
        """Execute high-speed snipe order"""
        try:
            # Calculate position size based on confidence
            position_size = min(
                self.config['max_buy_amount'] * signal.confidence,
                self.config['max_buy_amount']
            )
            
            self.logger.info(f"🎯 SNIPING: {signal.token_address} - Size: {position_size} SOL")
            
            # Execute buy order (implement actual trading logic here)
            # This would connect to your trading execution system
            
            # Track the position
            self.active_positions[signal.token_address] = {
                'entry_price': token_data.get('price', 0),
                'size': position_size,
                'entry_time': asyncio.get_event_loop().time(),
                'target_profit': self.config['target_profit'],
                'stop_loss': self.config['stop_loss']
            }
            
            self.logger.info(f"✅ Snipe executed successfully - {signal.token_address}")
            
        except Exception as e:
            self.logger.error(f"❌ Snipe execution failed: {e}")
    
    async def check_exit_conditions(self, price_data: dict):
        """Check if we should exit any active positions"""
        token_address = price_data.get('token_address')
        current_price = price_data.get('price', 0)
        
        if token_address not in self.active_positions:
            return
        
        position = self.active_positions[token_address]
        entry_price = position['entry_price']
        
        if entry_price == 0:
            return
        
        # Calculate P&L
        pnl_ratio = (current_price - entry_price) / entry_price
        
        # Check exit conditions
        should_exit = False
        exit_reason = ""
        
        if pnl_ratio >= position['target_profit']:
            should_exit = True
            exit_reason = f"Target profit reached: {pnl_ratio:.2%}"
        elif pnl_ratio <= position['stop_loss']:
            should_exit = True
            exit_reason = f"Stop loss triggered: {pnl_ratio:.2%}"
        elif asyncio.get_event_loop().time() - position['entry_time'] > 3600:  # 1 hour max hold
            should_exit = True
            exit_reason = "Maximum hold time reached"
        
        if should_exit:
            await self.execute_exit_order(token_address, exit_reason, pnl_ratio)
    
    async def execute_exit_order(self, token_address: str, reason: str, pnl_ratio: float):
        """Execute exit order for position"""
        try:
            self.logger.info(f"🚪 EXITING: {token_address} - Reason: {reason} - P&L: {pnl_ratio:.2%}")
            
            # Execute sell order (implement actual trading logic here)
            
            # Remove from active positions
            del self.active_positions[token_address]
            
            # Log performance for chipa.tech analytics
            self.logger.info(f"✅ Exit completed - P&L: {pnl_ratio:.2%}")
            
        except Exception as e:
            self.logger.error(f"❌ Exit execution failed: {e}")

Market Making Strategies

Market making bots provide liquidity to markets by continuously placing buy and sell orders around the current market price.

Automated Market Making Bot

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class MarketMakingBot(BaseTradingBot):
    """
    Professional market making bot for Solana tokens
    Advanced strategies from chipa.tech trading experts
    """
    
    def __init__(self, auth_token: str, wallet_address: str, target_tokens: List[str]):
        super().__init__(auth_token, wallet_address)
        self.target_tokens = target_tokens
        self.active_orders = {}
        self.spread_config = {
            'bid_spread': 0.002,  # 0.2%
            'ask_spread': 0.002,  # 0.2%
            'order_size': 0.1,    # SOL per order
            'max_position': 2.0,  # SOL max position per token
            'rebalance_threshold': 0.01  # 1%
        }
    
    async def generate_signals(self) -> List[TradingSignal]:
        """Generate market making signals for all target tokens"""
        signals = []
        
        for token_address in self.target_tokens:
            try:
                # Get current market data
                market_data = await self.get_market_data(token_address)
                current_price = market_data.get('price', 0)
                
                if current_price == 0:
                    continue
                
                # Calculate bid/ask prices
                bid_price = current_price * (1 - self.spread_config['bid_spread'])
                ask_price = current_price * (1 + self.spread_config['ask_spread'])
                
                # Generate signals for both sides
                signals.extend([
                    TradingSignal(
                        token_address=token_address,
                        action='buy',
                        confidence=0.8,
                        price_target=bid_price,
                        reasoning="Market making bid"
                    ),
                    TradingSignal(
                        token_address=token_address,
                        action='sell',
                        confidence=0.8,
                        price_target=ask_price,
                        reasoning="Market making ask"
                    )
                ])
                
            except Exception as e:
                self.logger.error(f"Error generating MM signals for {token_address}: {e}")
        
        return signals
    
    async def get_market_data(self, token_address: str) -> dict:
        """Get current market data for token"""
        # Implement market data fetching
        # This would use your market data source
        return {'price': 1.0, 'volume': 1000.0, 'liquidity': 5000.0}

Arbitrage Detection

Arbitrage bots identify price differences across different exchanges or liquidity pools and profit from these inefficiencies.

Cross-DEX Arbitrage Bot

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
class ArbitrageBot(BaseTradingBot):
    """
    Cross-DEX arbitrage bot for Solana ecosystem
    Proven strategies from chipa.tech arbitrage experts
    """
    
    def __init__(self, auth_token: str, wallet_address: str):
        super().__init__(auth_token, wallet_address)
        self.dex_connections = {}
        self.min_profit_threshold = 0.005  # 0.5% minimum profit
        self.max_position_size = 5.0  # SOL
    
    async def scan_arbitrage_opportunities(self):
        """Continuously scan for arbitrage opportunities"""
        while self.is_running:
            try:
                opportunities = await self.find_arbitrage_opportunities()
                for opportunity in opportunities:
                    if opportunity['profit_ratio'] > self.min_profit_threshold:
                        await self.execute_arbitrage(opportunity)
                await asyncio.sleep(0.5)  # High frequency scanning
            except Exception as e:
                self.logger.error(f"Arbitrage scanning error: {e}")
    
    async def find_arbitrage_opportunities(self) -> List[dict]:
        """Find profitable arbitrage opportunities"""
        opportunities = []
        
        # Get prices from multiple DEXs
        tokens_to_check = ['SOL/USDC', 'RAY/SOL', 'SRM/SOL']  # Example pairs
        
        for token_pair in tokens_to_check:
            prices = await self.get_multi_dex_prices(token_pair)
            
            if len(prices) >= 2:
                max_price_dex = max(prices, key=lambda x: x['price'])
                min_price_dex = min(prices, key=lambda x: x['price'])
                
                profit_ratio = (max_price_dex['price'] - min_price_dex['price']) / min_price_dex['price']
                
                if profit_ratio > self.min_profit_threshold:
                    opportunities.append({
                        'token_pair': token_pair,
                        'buy_dex': min_price_dex['dex'],
                        'sell_dex': max_price_dex['dex'],
                        'buy_price': min_price_dex['price'],
                        'sell_price': max_price_dex['price'],
                        'profit_ratio': profit_ratio,
                        'estimated_gas': 0.001  # SOL
                    })
        
        return sorted(opportunities, key=lambda x: x['profit_ratio'], reverse=True)
    
    async def get_multi_dex_prices(self, token_pair: str) -> List[dict]:
        """Get prices from multiple DEXs"""
        # Implement multi-DEX price fetching
        # This would connect to various Solana DEXs
        return [
            {'dex': 'Raydium', 'price': 1.001},
            {'dex': 'Orca', 'price': 1.006},
            {'dex': 'Serum', 'price': 0.998}
        ]
    
    async def execute_arbitrage(self, opportunity: dict):
        """Execute arbitrage trade"""
        try:
            self.logger.info(f"💰 ARBITRAGE: {opportunity['token_pair']} - "
                           f"Profit: {opportunity['profit_ratio']:.2%}")
            
            # Calculate optimal position size
            position_size = min(
                self.max_position_size,
                # Add more sophisticated position sizing logic
            )
            
            # Execute simultaneous buy/sell orders
            # Implementation would depend on your trading infrastructure
            
            self.logger.info(f"✅ Arbitrage executed - Estimated profit: {opportunity['profit_ratio']:.2%}")
            
        except Exception as e:
            self.logger.error(f"❌ Arbitrage execution failed: {e}")

Risk Management

Comprehensive risk management is crucial for long-term profitability. The AxiomTradeAPI provides tools for portfolio monitoring and risk assessment.

Advanced Risk Management System

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class RiskManager:
    """
    Advanced risk management system for trading bots
    Professional risk controls used by chipa.tech traders
    """
    
    def __init__(self, config: dict):
        self.config = config
        self.daily_loss_limit = config.get('daily_loss_limit', 0.05)  # 5%
        self.max_position_size = config.get('max_position_size', 0.10)  # 10% of portfolio
        self.max_correlation = config.get('max_correlation', 0.7)
        self.daily_pnl = 0.0
        self.positions = {}
        self.start_of_day_balance = 0.0
        
    async def check_risk_limits(self, proposed_trade: dict) -> dict:
        """Check if proposed trade passes all risk limits"""
        checks = {
            'daily_loss_limit': await self.check_daily_loss_limit(),
            'position_size_limit': await self.check_position_size_limit(proposed_trade),
            'correlation_limit': await self.check_correlation_limit(proposed_trade),
            'concentration_risk': await self.check_concentration_risk(proposed_trade)
        }
        
        passed = all(checks.values())
        
        return {
            'approved': passed,
            'checks': checks,
            'risk_score': self.calculate_risk_score(checks)
        }
    
    async def check_daily_loss_limit(self) -> bool:
        """Check if daily loss limit has been exceeded"""
        if self.start_of_day_balance == 0:
            return True
        
        loss_ratio = abs(min(0, self.daily_pnl)) / self.start_of_day_balance
        return loss_ratio < self.daily_loss_limit
    
    async def check_position_size_limit(self, trade: dict) -> bool:
        """Check if position size is within limits"""
        position_value = trade.get('size', 0) * trade.get('price', 0)
        portfolio_value = await self.get_portfolio_value()
        
        if portfolio_value == 0:
            return False
        
        position_ratio = position_value / portfolio_value
        return position_ratio <= self.max_position_size
    
    def calculate_risk_score(self, checks: dict) -> float:
        """Calculate overall risk score (0-1, lower is better)"""
        failed_checks = sum(1 for passed in checks.values() if not passed)
        return failed_checks / len(checks)

Performance Optimization

Optimizing bot performance is crucial for competitive trading. Here are advanced techniques used by successful traders on chipa.tech.

High-Performance Bot Framework

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import asyncio
import aiohttp
from concurrent.futures import ThreadPoolExecutor
import cProfile
import time

class HighPerformanceBot(BaseTradingBot):
    """
    High-performance trading bot optimized for speed
    Techniques from top chipa.tech performance optimization guide
    """
    
    def __init__(self, auth_token: str, wallet_address: str):
        super().__init__(auth_token, wallet_address)
        self.session = None
        self.thread_pool = ThreadPoolExecutor(max_workers=4)
        self.performance_metrics = {
            'api_call_times': [],
            'signal_generation_times': [],
            'execution_times': []
        }
    
    async def initialize_performance_optimizations(self):
        """Initialize performance optimizations"""
        # Use persistent HTTP connections
        self.session = aiohttp.ClientSession(
            connector=aiohttp.TCPConnector(
                limit=100,
                limit_per_host=30,
                keepalive_timeout=30
            )
        )
        
        # Pre-warm connection pools
        await self.warmup_connections()
        
        # Start performance monitoring
        asyncio.create_task(self.performance_monitor())
    
    async def warmup_connections(self):
        """Pre-warm HTTP connections to reduce latency"""
        warmup_tasks = []
        for _ in range(5):
            warmup_tasks.append(self.client.get_balance(self.wallet_address))
        
        await asyncio.gather(*warmup_tasks, return_exceptions=True)
        self.logger.info("🔥 Connection pool warmed up")
    
    async def performance_monitor(self):
        """Monitor and log performance metrics"""
        while self.is_running:
            try:
                # Calculate average response times
                if self.performance_metrics['api_call_times']:
                    avg_api_time = sum(self.performance_metrics['api_call_times']) / len(self.performance_metrics['api_call_times'])
                    self.logger.info(f"📊 Avg API response time: {avg_api_time:.3f}s")
                
                # Reset metrics every minute
                self.performance_metrics = {k: [] for k in self.performance_metrics}
                
                await asyncio.sleep(60)
            except Exception as e:
                self.logger.error(f"Performance monitoring error: {e}")
    
    async def optimized_api_call(self, func, *args, **kwargs):
        """Wrapper for API calls with performance tracking"""
        start_time = time.time()
        try:
            result = await func(*args, **kwargs)
            return result
        finally:
            call_time = time.time() - start_time
            self.performance_metrics['api_call_times'].append(call_time)
    
    def profile_performance(self, func):
        """Decorator for profiling function performance"""
        def wrapper(*args, **kwargs):
            profiler = cProfile.Profile()
            profiler.enable()
            try:
                result = func(*args, **kwargs)
                return result
            finally:
                profiler.disable()
                # Save profile results for analysis
                profiler.dump_stats(f'profile_{func.__name__}_{int(time.time())}.prof')
        return wrapper

Production Deployment

Deploying trading bots to production requires careful consideration of reliability, monitoring, and security.

Production-Ready Bot Deployment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import sys
from pathlib import Path
import docker
import yaml

class ProductionBotManager:
    """
    Production deployment manager for trading bots
    Enterprise-grade deployment strategies from chipa.tech infrastructure team
    """
    
    def __init__(self, config_path: str):
        with open(config_path, 'r') as f:
            self.config = yaml.safe_load(f)
        
        self.docker_client = docker.from_env()
        self.running_bots = {}
    
    def create_bot_dockerfile(self, bot_class: str) -> str:
        """Generate Dockerfile for bot deployment"""
        dockerfile_content = f"""
FROM python:3.11-slim

# Install system dependencies
RUN apt-get update && apt-get install -y \\
    gcc \\
    g++ \\
    && rm -rf /var/lib/apt/lists/*

# Set working directory
WORKDIR /app

# Copy requirements and install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy bot code
COPY . .

# Create non-root user for security
RUN useradd -m botuser && chown -R botuser:botuser /app
USER botuser

# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \\
    CMD python -c "import requests; requests.get('http://localhost:8080/health')"

# Run the bot
CMD ["python", "-m", "bots.{bot_class}"]
        """
        return dockerfile_content.strip()
    
    def create_docker_compose(self) -> str:
        """Generate docker-compose.yml for multi-bot deployment"""
        compose_content = """
version: '3.8'

services:
  token-sniping-bot:
    build: .
    environment:
      - BOT_TYPE=TokenSnipingBot
      - AUTH_TOKEN=${AUTH_TOKEN}
      - WALLET_ADDRESS=${WALLET_ADDRESS}
      - LOG_LEVEL=INFO
    volumes:
      - ./logs:/app/logs
      - ./config:/app/config
    restart: unless-stopped
    healthcheck:
      test: ["CMD", "python", "-c", "import requests; requests.get('http://localhost:8080/health')"]
      interval: 30s
      timeout: 10s
      retries: 3
    
  market-making-bot:
    build: .
    environment:
      - BOT_TYPE=MarketMakingBot
      - AUTH_TOKEN=${AUTH_TOKEN}
      - WALLET_ADDRESS=${WALLET_ADDRESS}
      - LOG_LEVEL=INFO
    volumes:
      - ./logs:/app/logs
      - ./config:/app/config
    restart: unless-stopped
    
  arbitrage-bot:
    build: .
    environment:
      - BOT_TYPE=ArbitrageBot
      - AUTH_TOKEN=${AUTH_TOKEN}
      - WALLET_ADDRESS=${WALLET_ADDRESS}
      - LOG_LEVEL=INFO
    volumes:
      - ./logs:/app/logs
      - ./config:/app/config
    restart: unless-stopped
  
  monitoring:
    image: prom/prometheus
    ports:
      - "9090:9090"
    volumes:
      - ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml
    
  grafana:
    image: grafana/grafana
    ports:
      - "3000:3000"
    environment:
      - GF_SECURITY_ADMIN_PASSWORD=admin
    volumes:
      - grafana-storage:/var/lib/grafana

volumes:
  grafana-storage:
        """
        return compose_content.strip()
    
    def deploy_bot_fleet(self):
        """Deploy complete bot fleet with monitoring"""
        try:
            # Create necessary directories
            os.makedirs('logs', exist_ok=True)
            os.makedirs('config', exist_ok=True)
            os.makedirs('monitoring', exist_ok=True)
            
            # Generate deployment files
            with open('Dockerfile', 'w') as f:
                f.write(self.create_bot_dockerfile('BaseTradingBot'))
            
            with open('docker-compose.yml', 'w') as f:
                f.write(self.create_docker_compose())
            
            # Create monitoring configuration
            self.create_monitoring_config()
            
            # Build and deploy
            os.system('docker-compose up -d --build')
            
            print("🚀 Bot fleet deployed successfully!")
            print("📊 Monitoring available at http://localhost:3000 (Grafana)")
            print("📈 Metrics available at http://localhost:9090 (Prometheus)")
            print("📝 Check logs with: docker-compose logs -f")
            
        except Exception as e:
            print(f"❌ Deployment failed: {e}")
    
    def create_monitoring_config(self):
        """Create Prometheus monitoring configuration"""
        prometheus_config = """
global:
  scrape_interval: 15s

scrape_configs:
  - job_name: 'trading-bots'
    static_configs:
      - targets: ['token-sniping-bot:8080', 'market-making-bot:8080', 'arbitrage-bot:8080']
    scrape_interval: 5s
    metrics_path: /metrics
        """
        
        with open('monitoring/prometheus.yml', 'w') as f:
            f.write(prometheus_config.strip())

# Example usage and main execution
if __name__ == "__main__":
    # Configuration for production deployment
    production_config = {
        'bots': [
            {
                'type': 'TokenSnipingBot',
                'instances': 2,
                'resources': {'cpu': '1', 'memory': '512Mi'}
            },
            {
                'type': 'MarketMakingBot', 
                'instances': 1,
                'resources': {'cpu': '0.5', 'memory': '256Mi'}
            }
        ],
        'monitoring': {
            'enabled': True,
            'metrics_port': 8080,
            'health_check_interval': 30
        }
    }
    
    print("🤖 AxiomTradeAPI Trading Bot Framework")
    print("=" * 50)
    print("Advanced trading strategies for Solana ecosystem")
    print("Trusted by professional traders on chipa.tech")
    print("=" * 50)
    print()
    print("Available Bot Types:")
    print("• TokenSnipingBot - High-speed new token acquisition")
    print("• MarketMakingBot - Automated liquidity provision")  
    print("• ArbitrageBot - Cross-DEX profit opportunities")
    print("• CustomBot - Implement your own strategies")
    print()
    print("🚀 Ready for production deployment!")
    print("📚 Full documentation: https://chipa.tech/axiomtradeapi-docs")
    print("💬 Community support: https://chipa.tech/discord")
    print("🎯 Trading strategies: https://chipa.tech/strategies")

Best Practices and Tips

Security Considerations

  1. API Key Management: Store authentication tokens securely using environment variables
  2. Rate Limiting: Implement proper rate limiting to avoid API restrictions
  3. Error Handling: Comprehensive error handling for network issues and API errors
  4. Logging: Detailed logging for debugging and performance analysis

Performance Tips

  1. Connection Pooling: Use persistent HTTP connections for better performance
  2. Async Operations: Leverage async/await for concurrent operations
  3. Data Caching: Cache frequently accessed data to reduce API calls
  4. Memory Management: Monitor memory usage for long-running bots

Monitoring and Alerts

  1. Health Checks: Implement health check endpoints for monitoring
  2. Performance Metrics: Track key performance indicators
  3. Alert Systems: Set up alerts for critical failures or performance issues
  4. Dashboard Creation: Use Grafana or similar tools for visualization

Community and Support

Join the chipa.tech trading community for:

  • 📈 Strategy Sharing: Learn from successful traders
  • 🛠️ Technical Support: Get help with implementation
  • 📊 Performance Analytics: Compare your bot’s performance
  • 🚀 Advanced Tutorials: Access premium trading content
  • 💬 Discord Community: Real-time discussions and support

Conclusion

Building successful trading bots requires combining technical expertise with sound trading principles. The AxiomTradeAPI provides the foundation, but success comes from:

  1. Robust Risk Management: Never risk more than you can afford to lose
  2. Continuous Testing: Backtest strategies thoroughly before deployment
  3. Performance Monitoring: Track and optimize bot performance
  4. Community Learning: Stay connected with other traders on chipa.tech

Start with simple strategies and gradually increase complexity as you gain experience. The Solana ecosystem offers tremendous opportunities for algorithmic trading, and the AxiomTradeAPI gives you the tools to capitalize on them.


This guide represents advanced trading techniques used by professional traders. Always do your own research and never invest more than you can afford to lose. Visit chipa.tech for the latest trading strategies and market insights.

Get Help from the Community

Join thousands of traders using AxiomTradeAPI on the chipa.tech platform. Share strategies, get help, and discover new opportunities.